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Abstract

Visual recognition tasks such as object detection, clas-
sification and semantic segmentation, are now almost ap-
proaching human levels performances due to rapid rate of
progress in recent years. However, the task of Amodal in-
stance segmentation, which is to predict the region encom-
passing both visible and occluded parts of objects in an im-
age, is still far for reaching maturity. Human beings learn
and have this innate ability to imagine what the complete
objects look like, even if objects might be half occluded.
Amodal instance segmentation lets the model act in a sim-
ilar way, by imagining beyond the visible pixels and pro-
viding complex reasoning about full scene structure. But
a major roadblock in this task so far has been the lack of
a dataset with annotations for amodal instances. In this
work, we propose an architecture capable of generating
scene composition by placing provided individual objects in
the scene, in a context aware manner. We do this by learning
a projection matrix based on encoded geometry and seman-
tic information, and use a discriminator loss for training
it to produce realistic compositions. Using this pipeline, we
would get free amodal mask even in cases where objects are
half occluded without human labelling, which can be fur-
ther used for several other tasks such as scene inpainting of
occluded part of the objects or other related segmentation
tasks.

1. Introduction
In recent years, visual recognition tasks such as image

classification [12, 9], object detection [18, 6], edge detec-
tion [2, 4] and semantic segmentation [19, 15] have wit-
nessed a dramatic progress. This has been driven by the
availability of large scale image datasets coupled with a re-
naissance in deep learning techniques with massive model
capacity and availability of high computational power at
cheaper prices. And with this pace, it can be certainly be

said that techniques for many of these tasks is rapidly ap-
proaching human levels of performance.

Figure 1: Example of amodal instance segmentation. The
left-most column shows the RGB images with occlusion,
the middle column shows the modal segmentation per-
formed on the images. The right-most column show the
task of amodal segmentation on the images.

Another remarkable property of human perception is the
ease with which our visual system interpolates information
not directly visible in an image. A particularly prominent
example of this, and one on which we focus, is amodal per-
ception: the phenomenon of perceiving the whole of a phys-
ical structure when only a portion of it is visible. Humans
can readily perceive partially occluded objects and guess
their true shape. However, the problem of amodal percep-
tion in computer vision is not yet fully explored due to the
fact that the data required to train models for these prob-
lems is very sparse. Currently, the datasets which do pro-
vide amodal annotations in scenes all have been achieved
via manual annotations. While manual annotations by hu-
mans is not uncommon, specifically for annotati

Thus obtaining masks of occluded parts of objects in an
image is also a challenging task and current methods be-
ing employed include human intervention to annotate and
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complete the masks. Also, masks of objects in an image
are often required in computer vision tasks such as amodal
instance segmentation and scene inpainting, thus obtaining
the masks of objects in an image is an important task and
cannot be ignored. Hence, in this project we try to automate
the process of obtaining the masks of objects in images by
composing and generating new scenes from images of in-
dividual objects, which are look realistic and semantically
correct.

Thus, the main objective of the project is to generate re-
alistic scenes with occlusions in them, from given cropped
images from a dataset. Alongwith obtaining the generated
compositions with occlusions, as a result we would also
obtain free annotation masks for the objects in the scene,
even for the occluded portions of the objects. We believe
the compositions generated using this method can supervise
the mainstream detection frameworks, segmentation frame-
works, and edge detection to perform better or help improve
any other related tasks since such tasks require understand-
ing object interactions and reasoning about occlusion.

This would be quantified by the performance of the al-
gorithms on our dataset by using a simple metric that fo-
cuses on the most salient aspect of our dataset, which is the
amodal nature of the segmentation.

2. Related Works
Most large-scale visual recognition datasets facilitate

recognizing visible objects in images. ImageNet[3] and
Open-Images[11] are used for classification and detection
without considering objects precise mask. Meanwhile,
segmentation datasets are built to explore the semantic
mask of each object in the pixel level. Pascal VOC[5],
COCO[14] and ADE20K[20] collect a large number of
images in common scenes. KITTI and Cityscapes[16] are
created for specific street scenarios. Although widely used
in computer vision, these datasets do not contain labeling
of invisible and occluded part of objects, thus cannot be
used for amodal understanding.

There has been very little work exploring amodal
completion due to the lack of publically available amodal
segmentation annotations.

Zhu et al. in Semantic Amodal Segmentation [21]
proposed an amodal segmentation of where human annota-
tors outline and name all salient regions in the image and
specify a partial depth order. The result is a rich scene
structure, including visible and occluded portions of each
region, figure-ground edge information, semantic labels,
and object overlap.

Malik et al. in Amodal Instance Segmentation[13]
proposed a novel method for amodal instance segmentation

which used a synthetic dataset formed by generating
synthetic amodal instance segmentation data from standard
modal instance segmentation annotations. They generated
composite patches by overlaying randomly cropped object
instances on other images on top of the main object. The
main objects were generated by cropping image patches
that overlap with at least one foreground object instance.
For each patch, the pixels belonging to the object are
labelled as positive, the pixels belonging to the background
are labelled as negative and pixels belonging to the other
object as unknown. This process ensures that original
modal mask is not affected by the overlaid objects. While
in this work, they were able to achieve good results both
qualitatively and quantitatively, the method of dataset
preparation requires manual annotating of objects which
makes it difficult to scale the method for large examples.

Lee et al., in Context-aware synthesis and placement of
object instances[1] proposed a novel technique in which
they constructed an end-to-end trainable neural network
which can coherently place an object in a semantic map.
Their method uses two networks consisting of two genera-
tive modules where one determines where the inserted ob-
ject mask should be (i.e., location and scale) and the other
determines what the object mask shape (and pose) should
look like. However, a major drawback of this technique is
that it doesn’t demonstrate successful execution of the case
when we want the placed object(s) occluded and at the same
time want to preserve the entire mask of the occluded ob-
ject(s).

3. Generating Training Data

3.1. Prepossessing and building data

Most recognition datasets such as Cityscapes, COCO
[14] already have the ground-truth labels of object classes
in the dataset along with the bounding box regions for each
of the objects in the images. For this work, we utilize the
Cityscape datatset which provides a diverse set of stereo
video sequences of street scenes from 50 different cities.
The dataset consists of complex scenes with mutiple occlu-
sion situations with different occlusion ratios as well differ-
ent poses of the object classes. The dataset provides both
semantic and instance-level annotation of the scenes. For
our use case, we used the instance masks to crop out from
Cityscape scenes and created full object instances as well
occluded object instances as shown in fig 2 and fig 3 re-
spectively. Even though Cityscape has mask annotations,
we used a Mask-RCNN pre-trained for modal segmentation
task and obtained segments for the objects. This was done
to show that our approach is generalizable to any set of im-
ages and need not have any ground truth annotation.
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(a) Image example

(b) Annotation example

Figure 2: Image and annotation example from Cityscape
dataset

(a) Non Occluded
Car instance

(b) Non Occluded
Human instance

(c) Occluded Car In-
stance

(d) Occluded Hu-
man instance

Figure 3: Cropped instances of objects

3.2. Labeling Occluded versus Full(Non Occluded )
object instances

The obtained segmented images of individual objects
had both occluded and non occluded object instances as
they were obatined from modal segmentation, and since one
of the major applications of our generated images was to
improve the amodal tasks, such as amodal segmentation,
and appearance recovery, thus we felt it was imperative that
the model knows the difference between occluded and non
occluded images of individual objects. Previous approaches
being employed to solve similar amodal problems do not
explicitly use this information of a segmented object be-

ing occluded or not, and implicitly learn this information to
predict its amodal segmentation. However, in our approach
since we tackle this problem by creating situations of oc-
clusions, we needed our model which creates these scenes,
to know how a scene with occlusion looks like. Thus, from
the segmented images of objects obtained from the dataset
in the previous step, we manually labelled them as occluded
and non occluded images of objects, and further trained
a Resnet-50 classifier, with over 90 percent classification
accuracy to confirm that, the labels (occluded or non oc-
cluded) of these segmented objects can be trusted upon.

The actual inputs to our model are these segmented non
occluded images, which are used to create the compositions,
whereas the segmented occluded object images are used to
check if the scenes created, have occlusions or not.

Figure 4: Occluded object versus full object Decision
boundary

4. Methods
The main objective of our frameworks is to use complete

(non occluded) single object instances to compose realistic
scenes with occlusion, which also give us their complete
ground truth masks, which could further be used to improve
and assist amodal tasks such as completing amodal masks,
and portion of occluded object images.

Since ours is a novel approach, we had to come up with
our own simple baseline methods, to compare the results of
our main approach.

4.1. A Non - Deep Learning Baseline

The objective was to come up with a simple way to
compose our individual object images in a manner that the
compositions looked realistic. While it should be simple,
it should still be able to leverage semantic information at
some level when creating these compositions. One obvi-
ous method for this approach would be to regress the affine
matrix values for transformation. But a major roadblock in
learning these parameters properly was the lack of a ground
truth.
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Figure 5: Basic Pipeline of our Deep Learning Methods

To counter this, we used a small subset of scenes from
the Cityscape dataset to find the most common values of ro-
tation, translation along x and y, scaling factors along the
same two axes for the objects from our considered classes.
After collecting about seven values for each of these param-
eters, given a pair of object instances, we randomly applied
these transformations to one of the objects, and then simply
pasted the resultant transformed object on the other (back-
ground) object to generate a composite scene. As discussed
in the results section, while this method did produce im-
ages with both objects present in the scene, a majority of
scenes were semantically meaningless. Although very few
results did looked realistic doing some justice to this ap-
proach of learning an affine transformation to create scene
compositions. This motivated further research to come up
with better ways of learning these affine transformations.

Affine Transformation: Affine transformations scale, ro-
tate, translate, mirror, and shear images, controlled by six
parameters in the affine transformation matrix. They trans-
formations are analogous to printing on a sheet of rubber
and stretching the sheet’s edges parallel to the plane. This
transform relocates pixels requiring intensity interpolation
to approximate the value of moving pixels, bicubic inter-
polation is the standard for image transformations in image
processing applications.

4.2. Towards Deep Learning based architectures

The architectural pipeline, as shown in fig 5 for both our
deep learning baseline and our novel approach are similar,
but vary in terms of the architectural components used for
the tasks within the pipeline.

The basic pipeline takes in two complete (non oc-

cluded) segmented images, and uses deep learning based
approaches in order to predict a transformation matrix for
the given images. This transformation is applied on one
of the object images (considered foreground object) and is
combined with the other object image (background object)
to create a scene with the background being partially oc-
cluded. In order to learn both, the appropriate values of
the transformation matrix (more details later) for a pair of
objects, and to check whether the scene created has some
occlusion or not, we take the cropped out visible part of
the background from the composed scene and pass it to
a discriminator. The discriminator essentially classifies if
the scene has occlusion or not. It takes two inputs, the
first one being the occluded portion of the background
from our composed scene and a second input which comes
from actual occluded images of objects from our segmented
dataset; thus trying to learn if the input from our composi-
tion matches the actual occluded input. The objective of
the first half of the network is to come up with realistic oc-
clusion situations to fool the discriminator into classifying
them as real. To achieve this, the loss from discriminator is
backpropagated to better estimate the affine matrix values.
The overall architecture is inspired from the Generative Ad-
verserial Network [7] architecture.

The individual architectural details of the Deep Learn-
ing Models used for feature extraction from images and for
generating values of transformation matrix are different in
both deep learning baseline and our novel approach.

4.3. Basic Deep Learning Approach - Deep Learn-
ing baseline

Our Deep learning baseline takes segmented objects as
inputs, flattens the images to obtain feature vectors, and
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Figure 6: Semantic reasoning composition GAN pipeline: Our Method

adds the vectors together. Next, a multilayer perceptron is
used to learn six parameters of the affine matrix, which is
then applied to the foreground object and a scene is com-
posed. The rest of the architecture (the discriminator) re-
mains the same as discussed in the basic pipeline.

The compositions obtained from this approach were bet-
ter than those obtained from the non Deep Learning Base-
line approach, since it does take into account the classes
which are being given as input to the network to calculate
the affine matrix, whereas the simple non Deep Learning
baseline, does not take that into consideration and randomly
selects the parameters for tr out of the few best ones. How-
ever, we realized that we could further improvise this ap-
proach by trying to take into factor the spatially shared fea-
tures and semantic information from the images, and the re-
lation between a pair of foreground and background object
images passed as input. We addressed these factors in pro-
posed our advanced deep learning based approach, which is
also our main novel approach.

4.4. Improvised Deep Learning Approach: Our
Method

Our novel method is still based on the basic deep learn-
ing pipeline discussed in the previous sections, but lever-
ages a comparatively advanced deep learning model for fea-
ture extraction and affine matrix estimation. The overall ar-
chitecture is shown in fig 6.

4.4.1 Feature Extractor

The first part of our method is similar to a composition
GAN architecture. We randomly sample two complete (non
occluded) images Ix and Iy from the segmented dataset S

which are given as inputs to our network. Consider Ix to be
the foreground object, for example, the image of the man
in Figure 6, and Iy as the background object, some portion
of which will be occluded, the car in our diagram. Next
in our network are two convolutional encoders, which are
used to extract meaningful features and information from
each of the input images Ix and Iy but separately. We de-
cided to keep two separate encoders for the foreground and
background object, since the semantic information which
we require from the foreground object is different from the
information we need from the background object. Thus, we
obtain two feature vectors,

Zx = Ex(Ix)

Zy = Ey(Iy)

as the output of these encoder architectures. These feature
vectors Zx and Zy are now concatenated to combine the
information extracted separately from the foreground and
the background object, thus combining them into a single
embedding, Z, which is the output of our feature extractor,
and is then passed on to the next part of our model, the STN
based GAN.

4.4.2 STN based Generative Adversarial Network

Spatial Transformer Networks: Spatial Transformer
Networks(STN)[10] have been widely used in many pre-
vious works for the spatial manipulation of data within the
network. They can be inserted into existing convolutional
architectures, giving neural networks the ability to actively
spatially transform feature maps, conditional on the feature
map itself, without any extra training supervision or modi-
fication to the optimisation process. They are used to esti-

5



Table 1: Few examples from generated images with the corresponding masks

mate the affine transformation matrix of input feature map
and maintain the shift-invariant property of deep networks.

The output of our feature extractor Z, which is a single
embedding vector for the pair of input object images is then
passed to the Spatial Transformer Network, which consists
of some 1- d convolutional layers, followed by some fully
connected layers to extract the features and relation between
the embeddings of the foreground and the background ob-
ject to obtain Ẑ.

Ẑ = σ(...σ(WT
1 ∗ σ(WT

0 ∗ Z + b0) + b1) + ...)

The values in Ẑ, which is a six dimensional vector
are considered as the rotation and translation parameters
of the affine matrix for the current composition. Further,
Parametrised Sampling Grid is used to find the correspond-
ing pixel locations after applying this transformation, given
the original images and estimated matrix.

Thus, our approach uses Spatial Transfer Network as a
generator (Φ), to estimate the affine matrix. This affine ma-
trix is a 3x3 matrix,

Ma = [R|t] = Φ(FCs(Z))

Next, this estimated affine matrix Ma is applied to the fore-
ground image Ix, and outputs a composition based on both
the objects Ix and Iy , giving

Î = Iy +Ma ∗ Ix

The generator thus outputs a generated occlusion scene
with knowledge of the ground truth masks of all objects in
the scene. The visible cropped portion of the background
object in the generated scene is then given as input to the

discriminator along with an image of real occluded object
from our input dataset and tells if both of these are simi-
lar or not (being able to distinguish between generated oc-
cluded scenes) and thus forcing the generator to produce a
more realistic occlusion scene and a more meaningful com-
position of objects. The loss function for this setup hence
turns into a similar one used in [7]. The discriminator seeks
to maximize the average of the log probability for real oc-
cluded images and the log of the inverted probabilities of
non occluded images.

∇θd
1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)
)))]

(1)
here, x(i) denotes a real-occluded image and z(i) de-

notes the generated occlusion scene.
The generator seeks to minimize the log of the inverse

probability predicted by the discriminator for occluded im-
ages. This has the effect of encouraging the generator to
generate samples that have a low probability of being de-
tected as not occluded.

∇θg
1

m

m∑
i=1

log
(

1−D
(
G
(
z(i)
)))

(2)

The entire model architecture including the layers in-
volved in each of the three modules along with the hyper-
parameters is given in Table 2.

5. Experiments and Analysis
Since there is no existing work based on scene composi-

tion which preserves the original masks of object instances
even in case of occlusions, a major challenge in this work
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Type Feature Extractor Discriminator Generator

Learning Rate 2e-4 2e-4 2e-4

Input Size 32(Batch Size) * 3 * 128 * 128 32(Batch Size) * 3 * 128 * 128 32(Batch Size) * 512 * 8 * 8

Layers

Conv(16,32)->Conv(32,64)-
>Conv(64,128)-
>Conv(128,256)
->Conv(256,512)

->Conv(512,1024)-
>Conv(1024,1024)

Conv(3,32,4,2,1)-
>Conv(32,64,4,2,1)-
>Conv(64,128,4,2,1)-
>Conv(128,256,4,2,1)
->Conv(256,512,4,2,1)

->Conv(512,1024,4,2,1)-
>Conv(1024,1,1,1)

Conv(512,256,3)-
>Conv(256,128,3)-
>Conv(128,64,3)
->Conv(64,32,1)

->Conv(32,16,1) ->FC(16,6)

Output Size 32(Batch Size) * 256 * 8 * 8 32(Batch Size) * 1 32(Batch Size) * 9 (Affine
Matrix)

Activation function ReLU() LeakyReLU(0.2) LeakyReLU(0.2)

Table 2: Few examples from generated images using Novel Method with the corresponding masks

was to do a quantitative evaluation of how good the results
are. We first provide qualitative results of the images gen-
erated by our model.

Next, to get a direct quantitative evaluation, we use the
generated scene compositions consisting of amodal masks,
and use them as ground truth to train a Mask-RCNN [8] to
make it capable of predicting segment for amodal instances.
Since predicting amodal segments requires understanding
object interaction and reasoning about occlusion, by obtain-
ing high scores on this task and comparing with scores of
other existing works on the same task, we demonstrate that
our model is able to learn these inductive biases. We re-
port the amodal segmentation performance by reporting the
COCO-type mean-Average Precision (mAP) proposed and
used in the COCO challenges [14].

5.1. Qualitative Results

In this section of analysis, we report the generated scene
compositions using a pair of individual instances of differ-
ent combinations from the 10 classes previously mentioned
in the dataset section. Table 1 shows some examples of the
generated images by using our Non Deep Learning baseline
and Deep learning baseline approach, along with the corre-
sponding binary mask for foreground object, amodal mask
and the occluded partial mask for background object. Table
3 shows the same set of images, but created by our novel
deep learning approach.

5.2. Quantitative Results

In this section, we begin by reiterating that the rich qual-
ity of images and corresponding ground truth masks gen-
erated using our model subsume many mainstream vision

tasks such as edge detection, object detection and classifi-
cation, and instance segmentation. To verify this for the in-
stance segmentation task, we used around 1500 generated
images along with the ground truth masks to fine-tune a
Mask-RCNN pre-trained on the COCO dataset. We split
into 1200/100/200 images for train/val/test set and evaluate
on test set.

5.2.1 Evaluation Metric

To evaluate the segment quality, we use the popular metric
for object proposal, mean-Average Precision (mAP) used in
the COCO challenge [14]. For both the average recall and
the average precision, the respective values are computed
for multiple IoU thresholds and then averaged. For our
analysis, during evaluation, we compute the IoU against:

1. Modal + Amodal masks

2. Modal masks

Additionally, to demonstrate the importance of having
amodal masks for training to improve the performance of
segmentation network on occluded objects, we train two
different models:

(A) Mask-RCNN fine tuned with the ground truth mask for
background (occluded) object being the full amodal
mask.

(B) Mask-RCNN fine-tuned with the ground truth mask
for background (occluded) object being the partial oc-
cluded mask.
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Nr. Generated Image Foreground Mask Amodal Mask Occluded Mask Object Edges

1

2

3

4

Table 3: Few examples from generated images using Novel Method with the corresponding masks

Henceforth, to reduce description, we refer these models
as model A and model B respectively.

As per our hypothesis, for the task of predicting seg-
ment of occluded objects, the performance of the first model
which leverages the full mask of occluded object given by
our model should lead to superior performance when com-
pared to the second model which uses only the partial oc-
cluded masks.

5.2.2 Segmentation Network - Mask-RCNN

We use Mask-RCNN, current state-of-the-art method for
modal class-agnostic object segmentation, pre-trained on
the COCO dataset from PyTorch’s torchvision framework
[17] and perform fine-tuning to fit our dataset. The Mask-
RCNN model uses a ResNet-50-FPN backbone with the
pre-trained box-predictor head replaced with a new Faster-
RCNN box predictor module and the pre-trained mask pre-
dictor head replaced with a new MaskRCNN mask predictor
module. The number of input-features for the box predic-
tor head is 1024, and the number of input-features for the
mask classifier is 256. For this work, since the object in-

stances in the generated compositions are unlabelled, the
class labels for all objects were considered to be same. This
method of implementation will be incorrect if the end goal
was to have a high accuracy on object classification, how-
ever, since for this work we are concerned only with the
accuracy of mask prediction of the object instances, giving
incorrect class labels should have no effect on the metrics
reported. Hence, there were two classes one corresponding
to background and one for the objects.

5.2.3 Results and Analysis

To demonstrate the superiority of our STN-GAN imple-
mentation over the non-DL and DL baselines quantitatively,
we first train a Mask-RCNN for amodal instance segmenta-
tion task using the dataset generated by the three respective
implementation methods.Table 5 compares the mAP and
mAR values at different epochs during training and the
mAP values on the test set.

The better values obtained by the STN-GAN implemen-
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Nr. Test Image Ground Truth
Modal Mask

Predicted Modal
Mask

Ground Truth
Amodal Mask

Predicted
Amodal Mask

1

2

3

4

Table 4: Few examples from generated images using Novel Method with the corresponding masks

Mask-RCNN fine-tuned for Amodal Segmentation
Method epoch = 3 epoch = 6 epoch= 10
Non-DL 0.662 0.750 0.763
DL 0.701 0.835 0.858
STN-GAN 0.787 0.797 0.803

Table 5: Comparison of mAP scores at different stages of
training for Non-DL, DL and STN-GAN method

tation on the test set as shown in table 6 could be explained
by the ability of this method to learn to generate composi-
tions with a better semantic meaning due to the presence of
convolutional layers which help extract better spatial fea-
tures. Since the aforementioned evaluations demonstrate
that the STN-GAN method leads to superior result, here-
after in further evaluations reported, we used the data gen-
erated by the STN-GAN method as the training data to fine-
tune Mask-RCNN.

Mask-RCNN fine-tuned for Amodal Segmentation
Method Test dataset score
Non-DL 0.494
DL 0.651
STN-GAN 0.721

Table 6: Comparison of mAP scores on test set for Non-DL,
DL and STN-GAN method

While intuitively it is clear and there are already works
[21, 13] which have demonstrated that amodal masks are
necessary to solve the task of Amodal Instance Segmen-
tation, to further demonstrate it we trained two different
Mask-RCNN models. One was trained with amodal masks
being included, while other was trained with partial masks
of occluded objects. The mAP values obtained during train-
ing are reported in table 7
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Using STN-GAN generated data
Method epoch = 3 epoch = 6 epoch= 10
without Amodal
masks

0.689 0.707 0.721

with Amodal
masks

0.787 0.797 0.803

Table 7: Comparison of mAP scores at different stages of
training of model A and model B

The performance of both models on the test set is as
shown in table 8. Mask-RCNN trained on amodal masks
outperforms model B with a significant increase in the mAP
score. The qualitative results are shown in tabel 4

Using STN-GAN generated data
Method Test dataset score
without Amodal
masks

0.607

with Amodal
masks

0.721

Table 8: Comparison of mAP scores on test set for model A
and model B

Next, we try to answer if whether training a Mask-RCNN
with amodal masks provided. makes the performance of
the model improve on the task of modal segmentation. In-
tuitively, this would seem justifiable since by providing
amodal masks we are providing more semantically mean-
ingful training data to the Mask-RCNN. To verify if this is
true, we evaluated the mAP scores obtained by model A and
model B with IoU computed only against the modal masks.
The results are reported in table ??

IoU computed against the modal masks
Method Test dataset score
without Amodal
masks

0.682

with Amodal
masks

0.811

Table 9: Comparison of mAP scores on test set for model A
and model B with IoU computed only against modal masks

As the results demonstrate, the network does end up im-
proving it’s performance on the modal segmentation task.

6. Discussion
In this work, we presented a novel deep learning archi-

tecture capable of creating semantically meaningful scene
compositions given two object instances. While not re-
stricted to this task, we demonstrated that the resulting

image data generated by our network could be used to
significantly improve performance of segmentation models
like Mask-RCNN on amodal instance segmentation task.
Our proposed architecture could have a great potential in
many currently growing fields such as autonomous driving
wherein different situations of driving scenes could be gen-
erated and used to train perception tasks. The motivation
of our work is to encourage and improve reasoning about
object interactions and scene structure, and amodal percep-
tion.

Future work will involve generating scenes with high in-
formation in terms of number of objects instances involved
as well as incorporating non-rigid objects, geometric fea-
tures and depth based compositions in world coordinate
frame.
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